

Welcome to gadget-python’s documentation!

Contents:

	Overview
	What is Gadget?

	What is gadget-python?

	Using Gadget
	Logging Operations

	Logging Updates

	Logging States

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	History
	0.1.0 (2016-08-16)

Indices and tables

	Index

	Module Index

	Search Page

Overview

What is Gadget?

Gadget is a mechanism intended to improve the speed of investigating bugs from post-mortem logs.

Gadget operates by embedding specifically-marked log lines which can later be parsed. Log lines indicate important events in your flow, which you may be interested in finding later.

There are several types of events:

	Operation: indicates that some action happened to or on some entity. It must contain the name of the entity and the name of the operation, and may contain other arbitrary parameters

	Update: Indicates that a certain entity has been updated. It must contain the update data (but not necessarily the new state)

	State: Indicates a new state for a given entity

What is gadget-python?

gadget-python is the Python library used to emit Gadget-targeted log lines and parse them.

Using Gadget

Logging Operations

>>> gadget.log_operation('setup', 'db1', {'use_transactions': True})

The code above will log that an operation called setup ran on an entity named db1, and as extra parameters would include {'use_transactions': True}.

Note

entities of operations can be either a single string id, a list of ids, or a dictionary mapping entitiy roles to entity ids:

>>> gadget.log_operation('copy', {'source': '/tmp/file1.txt', 'target': '/tmp/file2.txt'})

Note

entity ids are completely arbitrary, and it is the user’s responsibility to make sure they are indeed unique in the log.

Logging Updates

>>> gadget.log_update('db1', {'connection_string': '...'})

Logging States

>>> gadget.log_state('db1', {'connected': True, 'num_records': 1000})

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/getslash/gadget-python/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

gadget-python could always use more documentation, whether as part of the
official gadget-python docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/getslash/gadget-python/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up gadget-python for local development.

	Fork the gadget-python repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/gadget-python.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv gadget
$ cd gadget/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 gadget tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/getslash/gadget-python/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_something

History

0.1.0 (2016-08-16)

	First release on PyPI.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gadget	

 	
 	
 gadget.gadget_python	

Index

 G
 | L
 | P
 | S

G

 	
 	gadget (module)

 	
 	gadget.gadget_python (module)

L

 	
 	log_entity_creation() (in module gadget)

 	log_entity_deletion() (in module gadget)

 	log_error() (in module gadget)

 	
 	log_operation() (in module gadget)

 	log_state() (in module gadget)

 	log_update() (in module gadget)

P

 	
 	parse_log_line() (in module gadget)

S

 	
 	Setup (class in gadget)

gadget

	gadget package
	Submodules

	gadget.gadget_python module

	Module contents

gadget package

Submodules

gadget.gadget_python module

Module contents

	
class gadget.Setup(level=10)

	Bases: object

	
gadget.log_entity_creation(entity, params=None)

	Logs an entity creation

	
gadget.log_entity_deletion(entity, params=None)

	Logs an entity creation

	
gadget.log_error(error, result)

	Logs an error

	
gadget.log_operation(entities, operation_name, params=None)

	Logs an operation done on an entity, possibly with other arguments

	
gadget.log_state(entity, state)

	Logs a new state of an entity

	
gadget.log_update(entity, update)

	Logs an update done on an entity

	
gadget.parse_log_line(line)

	

Installation

Stable release

To install gadget-python, run this command in your terminal:

$ pip install gadget_python

This is the preferred method to install gadget-python, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for gadget-python can be downloaded from the Github repo [https://github.com/getslash/gadget_python].

You can either clone the public repository:

$ git clone git://github.com/getslash/gadget_python

Or download the tarball [https://github.com/getslash/gadget_python/tarball/master]:

$ curl -OL https://github.com/getslash/gadget_python/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to gadget-python's documentation!

 		Overview

 		What is Gadget?

 		What is gadget-python?

 		Using Gadget

 		Logging Operations

 		Logging Updates

 		Logging States

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		History

 		0.1.0 (2016-08-16)

_static/up-pressed.png

_static/down.png

_static/up.png

